Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences

نویسنده

  • Ha Quang Minh
چکیده

This work presents a parametrized family of divergences, namely Alpha-Beta LogDeterminant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highly general and contains many divergences as special cases, including the recently formulated infinitedimensional affine-invariant Riemannian distance and the infinite-dimensional Alpha Log-Det divergences between positive definite unitized trace class operators. In particular, it includes a parametrized family of metrics between positive definite trace class operators, with the affine-invariant Riemannian distance and the square root of the symmetric Stein divergence being special cases. For the Alpha-Beta Log-Det divergences between covariance operators on a Reproducing Kernel Hilbert Space (RKHS), we obtain closed form formulas via the corresponding Gram matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences

In this paper, we review and extend a family of log-det divergences for symmetric positive definite (SPD) matrices and discuss their fundamental properties. We show how to generate from parameterized Alpha-Beta (AB) and Gamma log-det divergences many well known divergences, for example, the Stein’s loss, S-divergence, called also Jensen-Bregman LogDet (JBLD) divergence, the Logdet Zero (Bhattac...

متن کامل

Optimization of Alpha-Beta Log-Det Divergences and their Application in the Spatial Filtering of Two Class Motor Imagery Movements

The Alpha-Beta Log-Det divergences for positive definite matrices are flexible divergences that are parameterized by two real constants and are able to specialize several relevant classical cases like the squared Riemannian metric, the Steins loss, the S-divergence, etc. A novel classification criterion based on these divergences is optimized to address the problem of classification of the moto...

متن کامل

Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities

In this paper, we extend and overview wide families of Alpha-, Betaand Gammadivergences and discuss their fundamental properties. In literature usually only one single asymmetric (Alpha, Beta or Gamma) -divergence is considered. We show in this paper that there exist families of such divergences with the same consistent properties. Moreover, we establish links and correspondences among these di...

متن کامل

Alpha/Beta Divergences and Tweedie Models

We describe the underlying probabilistic interpretation of alpha and beta divergences. We first show that beta divergences are inherently tied to Tweedie distributions, a particular type of exponential family, known as exponential dispersion models. Starting from the variance function of a Tweedie model, we outline how to get alpha and beta divergences as special cases of Csiszár’s f and Bregma...

متن کامل

Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization

We propose a class of multiplicative algorithms for Nonnegative Matrix Factorization (NMF) which are robust with respect to noise and outliers. To achieve this, we formulate a new family generalized divergences referred to as the Alpha-Beta-divergences (AB-divergences), which are parameterized by the two tuning parameters, alpha and beta, and smoothly connect the fundamental Alpha-, Betaand Gam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.08087  شماره 

صفحات  -

تاریخ انتشار 2016